منتدى استراحات زايد

منتدى استراحات زايد (http://vb.ma7room.com/index.php)
-   منتدى أخبار المواقع والمنتديات العربية والأجنبية (http://vb.ma7room.com/forumdisplay.php?f=183)
-   -   حل واجب m132 : 0544321455 : 00966544321455 : [email protected] : m132 tma (http://vb.ma7room.com/showthread.php?t=1207518)

محروم.كوم 03-30-2013 04:10 PM

حل واجب m132 : 0544321455 : 00966544321455 : [email protected] : m132 tma
 
M132: LINEAR ALGEBRA
Q−1: [5×2 marks]
Answer each of the following as True or False (justify your answer):

a) Two matrices and are row equivalent.
b) The linear system is inconsistent.
c) If A is a nonsingular matrix such that A4 = AT, then |A| = 1.
d) If A and B are nonsingular symmetric matrices, then ABA-1 is symmetric.
e) The vector is a linear combination of and .
Q−2: [2+2+1 marks] Let . Compute, if possible, a) (ABT)T, b) A − 2BTB, c) (ATB)T.
Q−3: [5 marks] Find all values of a for which the following linear system:
a) has no solution, b) has a unique solution, c) has infinitely many solutions.
Solve the linear system for a = 4.
Q¬−4: [3+1+1 marks] Let , and .
a) Find A-1.
b) Find a matrix X such that AX + B = C.
c) Is it possible to find a matrix Y such that YA + B = C? Explain your answer.
Q¬−5: [5 marks] Let and assume that |A| = 10. Find the determinant of .
Q−6: [5 marks] Find all values of a for which is linearly dependent.
Q¬−7: [5 marks] Let X1, X2 and X3 be three linearly independent vectors in Rn and let Y1 = X1 + X2, Y2 = 2X2 − X3 and Y3 = X1 + X2 − 2 X3. Show that Y1, Y2 and Y3 are linearly independent vectors in Rn.


الساعة الآن 06:33 AM

Powered by vBulletin® Copyright ©2000 - 2026, Jelsoft Enterprises Ltd.
Content Relevant URLs by vBSEO 3.5.2 TranZ By Almuhajir


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227